IPSec

Definition

- IPsec, Internet Protocol Security, is a set of protocols defined by the IETF, Internet Engineering Task Force, to provide IP security at the network layer.
- An IPsec based VPN, is made up by two parts:
- 1. Internet Key Exchange protocol (IKE)
- 2. IPsec protocols (AH/ESP/both)

1 - IKE

- The first part, IKE, is the initial negotiation phase, where the two VPN endpoints agree on which methods will be used to provide security for the underlying IP traffic.
- Furthermore, IKE is used to manage connections, by defining a set of Security Associations, SAs, for each connection.
- SAs are unidirectional, so there will be at least two SAs per IPsec connection.

2- IPSec Protocols

- The other part is the actual IP data being transferred, using the encryption and authentication methods agreed upon in the IKE negotiation.
- This can be accomplished in a number of ways; by using IPsec protocols ESP, AH, or a combination of both

How is this achieved?

- The flow of events can be briefly described as follows:
- 1. IKE negotiates how IKE should be protected
- 2. IKE negotiates how IPsec should be protected
- 3. IPsec moves data in the VPN

IKE - Internet Key Exchange

- Encrypting and authenticating data is fairly straightforward, the only things needed are encryption and authentication algorithms, and the keys used with them.
- The Internet Key Exchange protocol, IKE, is used as a method of distributing these "session keys", as well as providing a way for the VPN endpoints to agree on how the data should be protected.

IKE has three main tasks

- 1. Provide a means for the endpoints to authenticate each other
- 2. Establish new IPsec connections (create SA pairs)
- 3. Manage existing connections

IKE Negotiation

- The process of negotiating session parameters consists of a number of phases and modes.
- The flow of events can be briefly described as follows:
- IKE Phase1 -Negotiate how IKE should be protected
- IKE Phase2 Negotiate how IPsec should be protected
- Derive some fresh keying material from the key exchange in phase1, to provide session keys to be used in the encryption and authentication of the VPN data flow

Lifetimes

- Both the IKE and the IPsec connections have limited lifetimes, described both as time (seconds), and data (kilobytes).
- These lifetimes prevent a connection from being used too long, which is desirable from a cryptanalysis perspective.
- The IPsec lifetime is generally shorter than the IKE lifetime.
- This allows for the IPsec connection to be re-keyed simply by performing another phase-2 negotiation.
- There is no need to do another phase-1 negotiation until the IKE lifetime has expired.

- **IKE Proposals** An IKE proposal is a suggestion of how to protect data. The VPN gateway initiating an IPsec connection, the initiator, will send a list of proposals, a proposal-list, suggesting different methods of how to protect the connection.
- The connection being negotiated can be either an IPsec connection protecting the data flow through the VPN, or it can be an IKE connection, protecting the IKE negotiation itself.
- The responding VPN gateway, upon receiving this proposal-list, will choose the most suitable proposal according to its own security policy, and respond by specifying which one of the proposal it has chosen.

IKE Phase-1 - IKE Security

- Negotiation Phase-1, is used to authenticate the two VPN gateways or VPN Clients to each other, by confirming that the remote gateway has a matching Pre-Shared Key.
- However since we do not want to publish too much of the negotiation in plaintext, we first agree upon a way of protecting the rest of the IKE negotiation.
- This is done, by the initiator sending a proposal-list to the responder. When this has been done, and the responder accepted one of the proposals, we try to authenticate the other end of the VPN to make sure it is who we think it is, as well as proving to the remote gateway that we are who we are.
- Authentication can be accomplished through Pre-Shared Keys, certificates or public key encryption. Pre-Shared Keys is the most common authentication method today.

IKE Phase-2 - IPsec Security Negotiation

- In phase two, another negotiation is performed, detailing the parameters for the IPsec connection.
- In phase-2 we will also extract new keying material from the Diffie-Hellman key exchange in phase-1, to provide session keys to use in protecting the VPN data flow.
- If PFS, Perfect Forwarding Secrecy, is used, a new Diffie-Hellman exchange is performed for each phase-2 negotiation. While this is slower, it makes sure that no keys are dependent on any other previously used keys; no keys are extracted from the same initial keying material.
- This is to make sure that, in the unlikely event that some key was compromised, no subsequent keys can be derived.
- Once the phase-2 negotiation is finished, the VPN connection is established and ready for use.

IKE Parameters

- 1. Endpoint identification
- 2. Local and Remote networks/hosts
- 3. Tunnel/transport mode
- 4. Remote gateway
- 5. Main/aggressive mode
- 6. IPsec protocol (ESP/AH/both)
- 7. IKE encryption
- 8. IKE authentication
- 9. IKE DH group
- 10. IKE lifetime
- **11**. PFS on/off/identities
- 12. IPsec DH group
- 13. IPsec authentication
- 14. IPsec lifetime

1 - Endpoint Identification

- This is a piece of data representing the identity of the VPN gateway. What this is exactly, depends on the authentication method used.
- When Pre-Shared Keys are used, this is a piece of data, generally a hex-string or some kind of "pass phrase", identifying this VPN gateway.
- The remote gateway has to have the same PSK in order for the VPN gateways to authenticate each other.
- Authentication using Pre-Shared Keys is based on the Diffie-Hellman algorithm.

2 - Local and Remote Networks/Hosts

- These are the subnets or hosts between which IP traffic will be protected by the VPN. In a LAN-to-LAN connection, these will be the network addresses of the respective LANs.
- If roaming clients are used, the remote network will most likely be set to 0.0.0/0, meaning that the roaming client may connect from anywhere

3-Tunnel/Transport modes, tunnel or transport.

- Tunnel mode indicates that the traffic will be tunnelled to a remote gateway, which will decrypt/authenticate the data, extract it from its tunnel and pass it on to its final destination.
- This way, an eavesdropper will only see encrypted traffic going from one of VPN endpoint to another. In transport mode, the traffic will not be tunnelled, and is hence not applicable to VPN tunnels.
- It can be used to secure a connection from a VPN client directly to the security gateway, e.g. for IPsec protected remote configuration.
- This setting will typically be set to "tunnel" in most configurations.

4 - Remote Gateway

- The remote gateway is the remote security gateway which will be doing decryption/authentication and pass the data on to its final location.
- This field can also be set to "none", forcing the VPN to treat the remote address as the remote gateway.
- This is particularly useful in cases of roaming access, where the IP addresses of the remote VPN clients are not known beforehand.
- Setting this to "none" will allow anyone coming from an IP address conforming to the "remote network" address discussed above to open a VPN connection, provided they can authenticate properly.
- The remote gateway is not used in transport mode.

5- Main/Aggressive Mode

- The IKE negotiation has two modes of operation, main mode and aggressive mode.
- The difference between these two is that aggressive mode will pass more information in fewer packets, with the benefit of slightly faster connection establishment, at the cost of transmitting the identities of the security gateways in the clear.
- When using aggressive mode, some configuration parameters, such as Diffie-Hellman groups, and PFS, can not be negotiated, resulting in a greater importance of having "compatible" configurations on both ends.

6 - IPsec Protocols

- The IPsec protocols describe how the data will be processed. The two protocols to choose from are AH, Authentication Header, and ESP, Encapsulating Security Payload.
- ESP provides encryption, authentication, or both. However, we do not recommend using encryption only, since it will dramatically decrease security.

- **7 IKE Encryption** This specifies the encryption algorithm used in the IKE negotiation, and depending on the algorithm, the size of the encryption key used.
 - The algorithmsare:
- AES 1
- 2. Blowfish
- Twofish 3.
- 4. Cast128
- 5. 3DES
- 6. DES
- DES is only included to be interoperable with other older VPN implementations. Use of DES should be avoided whenever possible, since it is an old algorithm that is no longer considered secure.

8 - IKE Authentication

- This specifies the authentication algorithm used in the IKE negotiation.
- The algorithms supported by Amaranten VPN are:
- SHA1
- MD5

9 - IKE DH (Diffie-Hellman) Group • This specifies the Diffie-Hellman group to use when doing key exchanges in IKE.

- The Diffie-Hellman groups supported by Amaranten VPN are:
- DH group 1 (768-bit)
- DH group 2 (1024-bit)
- DH group 5 (1536-bit)
- The security of the key exchanges increase as the DH groups grow larger, as does the time of the exchanges.

10 - IKE Lifetime

- This is the lifetime of the IKE connection.
- It is specified in time (seconds) as well as data amount (kilobytes).
- Whenever one of these expires, a new phase-1 exchange will be performed. If no data was transmitted in the last "incarnation" of the IKE connection, no new connection will be made until someone wants to use the VPN connection again.

1 With PHS disabled, initial keying material is "greated" during the key exchange in phase-1 of the IKE negotiation. In phase-2 of the

- key exchange in phase-1 of the IKE negotiation. In phase-2 of the IKE negotiation, encryption and authentication session keys will be extracted from this initial keying material.
- By using PFS, Perfect Forwarding Secrecy, completely new keying material will always be created upon re-key. Should one key be compromised, no other key can be derived using that information.
- PFS can be used in two modes, the first is PFS on keys, where a new key exchange will be performed in every phase-2 negotiation. The other type is PFS on identities, where the identities are also protected, by deleting the phase-1 SA every time a phase-2 negotiation has been finished, making sure no more than one phase-2 negotiation is encrypted using the same key.
- PFS is generally not needed, since it is very unlikely that any encryption or authentication keys will be compromised.

12 - IPsec DH Group

- This is a Diffie-Hellman group much like the one for IKE. However, this one is used solely for PFS.
- IPsec Encryption
- The encryption algorithm to use on the protected traffic.
- This is not needed when AH is used, or when ESP is used without encryption.
- The algorithms supported by Amaranten VPN are:
- 1. AES
- 2. Blowfish
- 3. Twofish
- 4. Cast128
- 5. 3DES
- 6. DES

13 - IPsec Authentication

- This specifies the authentication algorithm used on the protected traffic.
- This is not used when ESP is used without authentication, although it is not recommended to use ESP without authentication.
- The algorithms supported are:
- 1. SHA1
- 2. MD5

14 - IPsec Lifetime

- This is the lifetime of the VPN connection. It is specified in both time (seconds) and data amount (kilobytes).
- Whenever either of these values is exceeded, a re-key will be initiated, providing new IPsec encryption and authentication session keys.
- If the VPN connection has not been used during the last re-key period, the connection will be terminated, and re-opened from scratch when the connection is needed again.

IKE Authentication Methods (Manual, PSK, certificates)

Manual Keying

• The "simplest" way of configuring a VPN is by using a method called "manual keying". This is a method where IKE is not used at all; the encryption and authentication keys as well as some other parameters are directly configured on both sides of the VPN tunnel.

Manual Keying

Advantages

Since it is very straightforward it will be quite interoperable. Most interoperability problems encountered today are in IKE. Manual keying completely bypasses IKE and sets up its own set of IPsec SAs.

Disadvantages

It is an old method, which was used before IKE came to be, and is thus lacking all the functionality of IKE. This method therefore has a number of limitations, such as having to use the same encryption/authentication key always, no anti-replay services, and it is not very flexible. There is also no way of assuring that the remote host/gateway really is the one it says it is.

Pre-Shared Keying, PSK

• Pre-shared keying is a method where the endpoints of the VPN "share" a secret key. This is a service provided by IKE, and thus has all the advantages that come with it, making it far more flexible than manual keying.

Advantages

Pre-Shared Keying has a lot of advantages over manual keying. These include endpoint authentication, which is what the PSKs are really for. It also includes all the benefits of using IKE. Instead of using a fixed set of encryption keys, session keys will be used for a limited period of time, where after a new set of session keys are used.

Disadvantages

One thing that has to be considered when using Pre-Shared Keying is key distribution. How are the Pre-Shared keys distributed to remote VPN clients and gateways? This is a major issue, since the security of a PSK system is based on the PSKs being secret. Should one PSK be compromised in some way, the configuration will need to be changed to use a new PSK.

Certificates

- Each VPN gateway has its own certificate, and one or more trusted root certificates.
- The authentication is based on several things:
- That each endpoint has the private key corresponding to the public key found in its certificate, and that nobody else has access to the private key.
- That the certificate has been signed by someone that the remote gateway trusts.

Certificates

Advantages

Added flexibility. Many VPN clients, for instance, can be managed without having the same pre-shared key configured on all of them, which is often the case when using pre-shared keys and roaming clients. Instead, should a client be compromised, the client? certificate can simply be revoked. No need to reconfigure every client.

Disadvantages

Added complexity. Certificate-based authentication may be used as part of a larger public key infrastructure, making all VPN clients and gateways dependent on third parties. In other words, there are more things that have to be configured, and there are more things that can go wrong.

IPsec Protocols (ESP/AH)

- The IPsec protocols are the protocols used to protect the actual traffic being passed through the VPN. The actual protocols used, and the keys used with them are negotiated by IKE.
- There are two protocols associated with IPsec, AH and ESP.

AH (Authentication Header)

Original IP packet

IP header	IP data

AH in transport mode

IP header	AH header	IP data			
Authenticated					
All in tunnal made					

AH in tunnel mode

Outer IP header	AH header	IP header	IP data

Authenticated

ESP (Encapsulating Security Payload)

Original IP packet

IP header IP data

ESP in transport mode

IP header	ESP hdr	IP data	ESP trailer	ESP auth
		Encrypted	J	
	I			

ESP in tunnel mode

Outer IP hdr	ESP hdr	IP hdr	IP data	ESP trailer	ESP auth
	Encrypted			I	
Authenticated					